LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS & PHYSICS**FOURTH SEMESTER – **APRIL 2015**

CH 4206 - GENERAL CHEMISTRY FOR MATHS & PHYS. - II

Date: 25/04/2015	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00	- 1	

Part-A

Answer all questions. Each question carries two marks.

(10x2=20)

- 1. State Faraday's law of electrolysis.
- 2. Define the radius ratio rule for ionic solids
- 3. Define enthalpy of neutralization.
- 4. What are anesthetics? Give examples.
- 5. Draw the furanose and pyranose structure of fructose.
- 6. What are indigo dyes? Give an example.
- 7. Mention any two properties of an enzyme.
- 8. What are the advantages of renewable energy resources?
- 9. Define unit cell.
- 10. How are Bordeaux mixtures prepared?

Part-B

Answer any eight questions. Each question carries five marks.

(8x5=40)

- 11. State Hess's law. Mention its applications.
- 12. How are solids classified?
- 13. How does conduction vary with concentration of an electrolyte?
- 14. Draw and explain the structure of sodium chloride.
- 15. Elucidate the structure of fructose.
- 16. Write the importance of hydrogen bonding and their types in detail.
- 17. How is malachite green prepared?
- 18. Explain the uses of broad spectrum antibiotics.
- 19. Explain the lock and key model of enzyme action.
- 20. Discuss the role of macronutrients.
- 21. Compare nuclear fission and fusion reactions.
- 22. What are auxochrome and chromophore? Give suitable examples.

Part-C Answer any four questions. Each question carries ten marks. (4x10=40)23a. What is Kohlrausch's law? Discuss any two of its applications. **(5)** b. Explain how the enthalpy of the reaction varies with temperature using Kirchhoff's equation. **(5)** 24a. Define lattice energy. **(3)** b. Consider an ionic compound MX₂ where M is a metal that forms a cation of +2 charge and X is a nonmetal that forms an anion of -1 charge. \longrightarrow MX₂ $M + X_2$ Draw the Born-Haber cycle for MX₂ formation. Use the following energy values and calculate the lattice energy (in kJ/mol) for MX2. ΔH_{sub} = 296 kJ/mol; ΔH_f = -421 kJ/mol; 1^{st} ionization energy = 378 kJ/mol; 2nd ionization energy = 555 kJ/mol; bond dissociation energy = 310 kJ/mol; electron affinity = -427 kJ/mol. **(7)** 25a. Discuss the classification of dyes based on the mode of application. **(7)** b. Draw the structure of penicillin. **(3)** 26a. Discuss the Sanger's method of N-terminal analysis of protein. **(5)** b. Describe the secondary structure of proteins. **(5)** 27a. Explain in detail the non-renewable energy sources and their types. **(6)**

b. Explain the process involved in the purification of petroleum.

b. Give the preparation of sulphanilamide and its uses.

28a. Write a brief note on the types of soil.

(4)

(5)

(5)